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 Uncertainty is unavoidable in engineering system 

 Structural mechanics entails uncertainties in material, 

geometry and load parameters (aleatory-epistemic) 

 Probabilistic approach is the traditional approach 

 Requires sufficient information to validate the 

probabilistic model 

 What if data is insufficient to justify a distribution? 

Introduction- Uncertainty 



 

 

 

 

Introduction- Uncertainty 

Available Information 

Sufficient 
 

Incomplete 
 

Probability 
 

Probability Bounds 
 

Information 



 

 

 

 

Introduction- Uncertainty 

Probability 
 

Probability Bounds 
 

Lognormal 
 

Lognormal with interval mean 
 

Tucker, W. T. and Ferson, S. , Probability bounds analysis in environmental risk assessments, 

Applied Biomathematics, 2003. Mean = [20, 30], Standard deviation = 4, truncated at 0.5th and 99.5th. 



 

 

 

 

Introduction- Uncertainty 

What about functions of random variables? 

 If basic random variables are not all Gaussian, the 

probability distribution of the sum of two or more basic 

random variables may be not Gaussian. 

  Unless all random variables are lognormally distributed, 

the products or quotients of several random variables may 

not be lognormal. 

  More over, in the case when the function is a nonlinear 

function of several random variables, regardless of 

distributions, the distribution of the function is often 

difficult or nearly impossible to determine analytically. 
 



 

 

 

 

Introduction- Uncertainty 

X: lognormal 

     mean = [20, 30] 

     sdv    = 4 

 

Y: normal 

     mean  = [23, 27] 

     sdv     = 3 

 

Z1 = X + Y: any dependency 

Z2 = X + Y: independent 

CDF 

Z = X + Y 



 

 

 

 

Introduction- Uncertainty 
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Zhang, H., Mullen, R. L. and Muhanna, R. L. “Interval Monte Carlo methods for structural reliability”, Structural Safety, 
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Interval arithmetic – Background 

 Archimedes (287 - 212 B.C.) 

   circle of radius one has  

      an area equal to    

 
 
 

 

 
 

 

 

3
10

71
3

1

7
 

r=1 

 2    4 

 = [3.14085, 3.14286] 



 Only range of information (tolerance) is available 

 

 

 Represents an uncertain quantity by giving a range of possible 

values 

 

 How to define bounds on the possible ranges of uncertainty? 

 experimental data, measurements, statistical analysis, 

expert knowledge 

0t t = 

0 0[ ,  ]t t t = - 

Introduction- Interval Approach 



 Simple and elegant 

 Conforms to practical tolerance concept 

 Describes the uncertainty that can not be appropriately 

modeled by probabilistic approach 

 Computational basis for other uncertainty approaches 

(e.g., fuzzy set, random set, probability bounds)  

Introduction- Why Interval? 

  Provides guaranteed enclosures 



 Four-bay forty-story frame 

Examples- Load Uncertainty 



 Four-bay forty-story frame 

 

Loading  A Loading  B Loading  C Loading  D 

Examples- Load Uncertainty 



 Four-bay forty-story frame 
 
 Total number of floor load patterns 
 
       2160 = 1.46  1048 

 

 If one were able to calculate 
 
       10,000 patterns / s 
 
there has not been sufficient time since 
the creation of the universe (4-8 ) billion 
years ? to solve all load patterns for this 
simple structure 
 
Material  A36, Beams  W24 x 55, 
Columns  W14 x 398 

 

14.63 m (48 ft) 

1 5 

6 10 

201 205 

196 200 

357 360 

1 5    
201 204 

17.64 kN/m (1.2 kip/ft) 

Examples- Load Uncertainty 
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Interval arithmetic 

 Interval number represents a range of possible 

values within a closed set  
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Properties of Interval Arithmetic 

Let x, y and z be interval numbers 

1.  Commutative Law 

x + y = y + x 

xy = yx 

2.  Associative Law 

x + (y + z) = (x + y) + z 

x(yz) = (xy)z 

3.  Distributive Law does not always hold, but 

x(y + z)  xy + xz 



Sharp Results – Overestimation 

 The DEPENDENCY problem arises when one or 
several variables occur more than once in an 
interval expression  

 
 

  

     f (x) = x (1- 1)     f (x) = 0 

     f (x) = { f (x) = x -x | x x} 

 

   f (x) = x - x ,       x =  [1, 2]  

   f (x) = [1 - 2, 2 - 1] = [-1, 1]  0 

  f (x, y) = { f (x, y) = x -y | x x, y  y} 

  
 

  



Sharp Results – Overestimation 

 Let a, b, c and d be independent variables, each with 
interval [1, 3] 
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Finite Elements 

Finite Element Methods (FEM) are 

numerical method that provide 

approximate solutions to differential 

equations (ODE and PDE) 



 

 

 

 

 

 

 

 

 

Finite Elements 



 

 

 

 

 

 

 

 

Finite Element Model (courtesy of Prof. Mourelatous) 

500,000-1,000,000 equations 

 

Finite Elements 



Finite Elements-  Uncertainty& Errors 

 Mathematical model (validation) 

 Discretization of the mathematical model 

into a computational framework 

(verification)  

 Parameter uncertainty (loading, material 

properties) 

 Rounding errors 



Interval Finite Elements (IFEM) 

 Follows conventional FEM 

 Loads, geometry and material property are expressed as 
interval quantities 

 System response is a function of the interval variables 
and therefore varies within an interval 

 Computing the exact response range is proven NP-hard 

 The problem is to estimate the bounds on the unknown 
exact response range based on the bounds of the 
parameters 



FEM- Inner-Bound Methods 

 Combinatorial method (Muhanna and Mullen 1995, 
Rao and Berke 1997) 

 Sensitivity analysis method (Pownuk 2004) 

 Perturbation (Mc William 2000) 

 Monte Carlo sampling method 

 Need for alternative methods that achieve 

 Rigorousness – guaranteed enclosure 

 Accuracy – sharp enclosure 

 Scalability – large scale problem 

 Efficiency 



 Linear static finite element  

 Muhanna, Mullen, 1995, 1999, 2001,and Zhang 2004 

 Popova 2003, and Kramer 2004 

 Corliss, Foley, and Kearfott 2004 

 Neumaier and Pownuk 2007 

 Heat Conduction 

 Pereira and Muhanna 2004 

 Dynamic 

 Dessombz, 2000 

 Free vibration-Buckling 

 Modares, Mullen 2004, and Bellini and Muhanna 2005 

IFEM- Enclosure 
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 Multiple occurrences – element level 

 Coupling – assemblage process 

 Transformations – local to global and back 

 Solvers – tightest enclosure 

 Derived quantities – function of primary  

Overestimation in IFEM 



 

 

 

Naïve interval FEA 
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 exact solution: u2 = [1.429, 1.579],       u3 = [1.905, 2.105] 

 naïve solution: u2 = [－0.052, 3.052],   u3 = [0.098, 3.902] 

 interval arithmetic assumes that all coefficients are 

independent 

 response bounds are severely overestimated (up to 2000%) 
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New Formulation 

2 2 

2 2 Element (m) 

1 

PY 

Node (n) 
(a) 

Element (m) 

uY 

 
uX 

F2m, u2m 

F1m, u1m 

PY 

2 2 

1 2 1 2 

1 1 

Free node (n) 

(b) 

A typical node of a truss problem. (a) Conventional formulation. (b) Present formulation. 

 



New Formulation 

 Lagrange Multiplier Method 

A method in which the minimum of a functional 

such as 

 

with the linear equality constraints  

 

 

is determined 

 

=
b

a
dxvvuuxFvuI ),,,,(),( ''

0),,,( '' =vvuuG



New Formulation 

 Lagrange Multiplier Method 

The Lagrange’s method can be viewed as one of 

determining u, v and  by setting the first variation of 

the modified functional 

 

 

to zero 
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New Formulation 

 Lagrange Multiplier Method 

The result is Euler Equations of the 

 

 

 

 

from which the dependent variables u, v, and  can be 

determined at the same time 
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New Formulation 

In steady-state analysis, the variational formulation for 

a discrete structural model within the context of Finite 

Element Method (FEM) is given in the following form 

of the total potential energy functional when subjected 

to the constraints 
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New Formulation 

Invoking the stationarity of  *, that is *= 0, we 

obtain 

 

 

In order to force unknowns associated with coincident 

nodes to have identical values, the constraint equation 

CU=V takes the form CU = 0, and the above system 

will have the following form 
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New Formulation 
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New Formulation 
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New Formulation 
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New Formulation 

 Iterative Enclosure (Neumaier 2007) 
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Numerical examples 

   

 

   

 

    
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Numerical examples 

 Eleven bar truss  

Error in bounds%= 0.17 % 

15 

Table 2  Eleven bar truss -displacements for 12% uncertainty in the modulus of elasticity (E)  

V210-5 U410-5 V410-5 

Lower Upper Lower Upper Lower Upper 

Combinatorial approach -15.903532 -14.103133 2.490376 3.451843 -0.843182 -0.650879 

Krawczyk FPI --- --- --- --- --- --- 

Neumaier’s approach -15.930764 -13.967877 2.431895 3.4943960 -0.848475 -0.633096 

Error %(width) 9.02 10.50 11.99 

Present approach -15.930764 -13.967877 2.431895 3.494396 -0.848475 -0.633096 

Error %(width) 9.02 10.50 11.99 



Numerical examples 

 Eleven bar truss  

Error in bounds%= 0.45 % 

Table 4  Eleven bar truss - comparison of axial forces for 10% uncertainty in the  modulus of 

elasticity (E)  for various approaches 

Combinatorial approach -6.28858 -5.57152 -10.54135 -9.73966 

Simple enclosure z1(u) -7.89043 -3.96214 -11.89702 -8.39240 

Error %(width) 447.83 337.15 

Intersection z2(u)  -6.82238 -5.08732 -11.32576 -9.02784 

Error %(width) 141.97 186.63 

Present approach -6.31656 -5.53601 -10.58105 -9.70837 

Error %(width) 8.85 8.85 

3
( )N kN

3
( )N kN

9
( )N kN

9
( )N kN

15 



Numerical examples 

 Eleven bar truss – Bounds on axial forces  

15 
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Numerical examples 

 Fifteen bar truss – Bounds on axial forces  



Numerical examples 

 Fifteen bar truss – Bounds on axial forces  

Table 12 Forces (kN)  in elements of fifteen element truss for 10% uncertainty in modulus of elasticity (E) and load 

Element Combinatorial approach Neumaier’s  approach %Error 

in width 

Present approach %Error in 

width 
LB UB LB UB LB UB 

1 254.125 280.875 227.375 310.440 210.53     254.125 280.875 0.000 

2 -266.756 -235.289 -294.835 -210.187 169.01 -266.756 -235.289 0.000 

3 108.385 134.257 95.920 148.174 
101.97 

107.098 134.987 
7.797 

4 -346.267 -302.194 -379.167 -272.461 
142.12 

-347.003  -300.909 
4.585 

5 -43.854 -16.275 -48.143 -12.985 
27.48 

-44.975  -14.543 
10.344 

14 211.375 233.625 189.125 258.217 210.53     211.375 233.625 0.000 

15 -330.395 -298.929 -365.174 -267.463 210.53     -330.395 -298.929 0.000 



Numerical examples 

 Fifteen bar truss–Probability Bounds on mid-span displacement 



Conclusions 

 Development and implementation of IFEM 

 uncertain material, geometry and load parameters are described 
by interval variables 

 interval arithmetic is used to guarantee an enclosure of response 

 Derived quantities obtained at the same accuracy of the 
primary ones 

 The method is generally applicable to linear and nonlinear 
static FEM, regardless of element type 

  IFEM forms a basis for generalized models of uncertainty in 
engineering 
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